UWE Bristol’s biosciences research centre: an overview

TOLENA DORAN 043.jpghe University of the West of England (UWE Bristol)’s Centre for Research in Biosciences (CRIB) is its largest research centre and therefore covers many areas. We caught up with CRIB’s Director Olena Doran to hear some of the highlights and plans for the Centre in 2017.

CRIB addresses a broad range of projects in the main three strategic directions: biomedical, bio-sensing and analytical, and agri-food, plants and environment. “Our strength is in cross-disciplinary research, as technology development doesn’t exist on its own,” says Doran.  “Through this, we focus on research with impact and research that informs teaching.” Although Doran says she is proud of all work going on in CRIB, the scientist highlights some ongoing projects.

Biomedical area

CRIB currently works with over 60 companies and one of its researchers within the biomedical group is Dr Saliha Saad, who works with well-known companies like Johnson & Johnson, Colgate-Palmolive, and Procter & Gamble to help them develop oral hygiene products that could reduce oral malodour. A third of people have bad breath that others can detect (called halitosis). The cause of such malodour is attributed to a community of billions of bacteria knitted together in a ‘biofilm’ on our tongues. Using an artificial tongue, made from a cellulose matrix to which is fed a continuous medium representing saliva, Dr Saad and her co-workers are running trials to test antimicrobial compounds and see how they affect bad breath. To help them achieve this, they also use a complex machine that can detect numerous gases that are thought to contribute to oral malodour.

Bio-sensing and analytical research

While Dr Saad’s research looks to eliminate bacteria, another group of CRIB researchers is using bioluminescent bacteria to develop bio-sensors, devices that use a living organism to detect the presence of chemicals. Dr Elizabeth Anderson and Dr Gareth Robinson have managed to harness the glow-in-the-dark properties of bacteria to help some leukaemia sufferers receive swifter and more effective treatment. Bioluminescence – light emission from living organisms – increases in some bacteria when they come into contact with certain drugs. By engineering an e-coli with a high sensitivity to a chemotherapy drug, the scientists have developed a fast method to test whether the compound is the most suitable to fight acute myeloid leukaemia tumour cells.

Agri-food, plants and environment research

More harmful bacteria could be behind Acute Oak Decline (AOD), a condition that attacks thousands of oak trees in the UK and can kills the trees in four to six years. Professor Dawn Arnold is leading research projects that look to determine whether bacteria is causing AOD and, if this is the case, which one is the culprit and how it infects the tree. So far, the team has identified two previously undiscovered species of bacteria that could be responsible for the tree disease. By identifying genes in the bacteria that allows it to enter the oak tree and cause the disease, the team could find a way of using a chemical to disrupt that function without harming the plant.

Meanwhile, Dr Neil Willey’s work looks at what happens when plants absorb small amounts of radioactive isotopes. How quickly a plant takes up radiation depends on the type of plant, the soil and the isotope. In the laboratory, he and his team grow plants in contaminated soil samples collected from different locations. The research is part of a consortium called TREE that aims to reduce uncertainty in estimating the risk of humans and wildlife associated with exposure to radioactivity. He also conducts research activities in the vicinity of the Chernobyl exclusion zone. Says Doran: “His work nicely links to our ambition to include research in teaching and enhance students’ experience.” Dr Willey has also helped organise a summer schools for PhD students in unique places like Chernobyl, where a massive nuclear accident occurred in 1986 at its power plant. In September 2016, the trip was filmed and the video is now available as training material for students. Last year, TREE won a Times Higher Education Award for research project of the year.

As for CRIB’s plans for 2017, Professor Doran says this includes further developing the Centre’s links with industry and other stakeholders. Despite already involving itself with 100 national and international collaborations with universities, research institutions, industry and government bodies, CRIB still wants to expand its reach even further. Doran is particularly interested in developing close links between CRIB and the University’s new Enterprise Zone that provides unique opportunities for collaboration with businesses. “We don’t want to miss an opportunity to showcase our research or to collaborate further with industry,” says Doran.

Advertisement

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s